pip install quickfin
pip install --upgrade quickfin
from quickfin import * price_data = PriceData()
data = price_data.current("MSFT") print(data) # Print object assigned to `data` variable
{ 'info': { 'industry': 'Software - Infrastructure', 'name': 'Microsoft Corporation', 'sector': 'Technology', 'symbol': 'MSFT' }, 'current': { 'Adj Close': 424.57, 'Change Amount': -0.62, 'Change Rate': -0.0, 'Close': 424.57, 'Date': '2024-04-01', 'Day Range': 5.67, 'High': 427.89, 'Low': 422.22, 'Open': 423.95, 'Volume': 16298900 } }
data = price_data.history("META") print(data)
{ 'info': { 'industry': 'Internet Content & Information', 'name': 'Meta Platforms, Inc.', 'sector': 'Communication Services', 'symbol': 'META' }, 'current': { 'Adj Close': 491.35, 'Change Amount': -4.15, 'Change Rate': -0.01, 'Close': 491.35, 'Date': '2024-04-01', 'Day Range': 15.65, 'High': 497.43, 'Low': 481.78, 'Open': 487.2, 'Volume': 9236300 }, 'history': [ { 'Adj Close': 491.35, 'Change Amount': -4.15, 'Change Rate': -0.01, 'Close': 491.35, 'Date': '2024-04-01', 'Day Range': 15.65, 'High': 497.43, 'Low': 481.78, 'Open': 487.2, 'Volume': 9236300 }, { 'Adj Close': 485.58, 'Change Amount': 7.26, 'Change Rate': 0.01, 'Close': 485.58, 'Date': '2024-03-28', 'Day Range': 7.74, 'High': 492.89, 'Low': 485.15, 'Open': 492.84, 'Volume': 15212800 }, { 'Adj Close': 493.86, 'Change Amount': 5.44, 'Change Rate': 0.01, 'Close': 493.86, 'Date': '2024-03-27', 'Day Range': 11.82, 'High': 499.89, 'Low': 488.07, 'Open': 499.3, 'Volume': 9989700 } --- snip --- ] }
data = price_data.history("DTE", days=5) print(data)
{ 'info': { 'industry': 'Utilities - Regulated Electric', 'name': 'DTE Energy Company', 'sector': 'Utilities', 'symbol': 'DTE' }, 'current': { 'Adj Close': 110.73, 'Change Amount': 1.41, 'Change Rate': 0.01, 'Close': 110.73, 'Date': '2024-04-01', 'Day Range': 1.86, 'High': 112.14, 'Low': 110.28, 'Open': 112.14, 'Volume': 847500 }, 'history': [ { 'Adj Close': 110.73, 'Change Amount': 1.41, 'Change Rate': 0.01, 'Close': 110.73, 'Date': '2024-04-01', 'Day Range': 1.86, 'High': 112.14, 'Low': 110.28, 'Open': 112.14, 'Volume': 847500 }, { 'Adj Close': 112.14, 'Change Amount': -0.82, 'Change Rate': -0.01, 'Close': 112.14, 'Date': '2024-03-28', 'Day Range': 1.34, 'High': 112.31, 'Low': 110.97, 'Open': 111.32, 'Volume': 990500 }, { 'Adj Close': 111.3, 'Change Amount': -3.35, 'Change Rate': -0.03, 'Close': 111.3, 'Date': '2024-03-27', 'Day Range': 3.46, 'High': 111.41, 'Low': 107.95, 'Open': 107.95, 'Volume': 1668700 }, { 'Adj Close': 107.13, 'Change Amount': 1.34, 'Change Rate': 0.01, 'Close': 107.13, 'Date': '2024-03-26', 'Day Range': 1.91, 'High': 108.98, 'Low': 107.07, 'Open': 108.47, 'Volume': 1110800 }, { 'Adj Close': 108.42, 'Change Amount': 0.88, 'Change Rate': 0.01, 'Close': 108.42, 'Date': '2024-03-25', 'Day Range': 1.41, 'High': 109.3, 'Low': 107.89, 'Open': 109.3, 'Volume': 1045100 } ] }
data = price_data.history("CMS", date="2022-03-25") print(data)
{ 'info': { 'industry': 'Utilities - Regulated Electric', 'name': 'CMS Energy Corporation', 'sector': 'Utilities', 'symbol': 'CMS' }, 'current': { 'Adj Close': 59.98, 'Change Amount': 0.41, 'Change Rate': 0.01, 'Close': 59.98, 'Date': '2024-04-01', 'Day Range': 0.7, 'High': 60.42, 'Low': 59.72, 'Open': 60.39, 'Volume': 1619100 }, 'history': [ { 'Adj Close': 64.66, 'Change Amount': -0.72, 'Change Rate': -0.01, 'Close': 68.92, 'Date': '2022-03-25', 'Day Range': 0.94, 'High': 69.05, 'Low': 68.11, 'Open': 68.2, 'Volume': 1706900 } ] }
data = price_data.history("SCS", date_start="2021-03-10", date_end="2021-03-14") print(data)
{ 'info': { 'industry': 'Business Equipment & Supplies', 'name': 'Steelcase Inc.', 'sector': 'Industrials', 'symbol': 'SCS' }, 'current': { 'Adj Close': 13.03, 'Change Amount': 0.09, 'Change Rate': 0.01, 'Close': 13.03, 'Date': '2024-04-01', 'Day Range': 0.35, 'High': 13.3, 'Low': 12.95, 'Open': 13.12, 'Volume': 1679800 }, 'history': [ { 'Adj Close': 14.47, 'Change Amount': -0.38, 'Change Rate': -0.02, 'Close': 16.59, 'Date': '2021-03-12', 'Day Range': 0.55, 'High': 16.71, 'Low': 16.16, 'Open': 16.21, 'Volume': 542400 }, { 'Adj Close': 14.08, 'Change Amount': 0.03, 'Change Rate': 0.0, 'Close': 16.14, 'Date': '2021-03-11', 'Day Range': 0.29, 'High': 16.23, 'Low': 15.94, 'Open': 16.17, 'Volume': 620200 }, { 'Adj Close': 14.11, 'Change Amount': -0.73, 'Change Rate': -0.05, 'Close': 16.18, 'Date': '2021-03-10', 'Day Range': 0.91, 'High': 16.22, 'Low': 15.31, 'Open': 15.45, 'Volume': 758800 } ] }
data = price_data.candlestick("F", 25) print(data)
data = price_data.line("F", 25, "Close") print(data)
data = price_data.table("F", 25) print(data)
from quickfin import * fin_info = FinInfo()
data = fin_info.equity("IBM") print(type(data)) # Print Python data type print(data) # Print object assigned to `data` variable
<class 'dict'> { 'industry': 'Information Technology Services', 'name': 'International Business Machines Corporation', 'sector': 'Technology', 'symbol': 'IBM' }
data = fin_info.equities() print(data)
[ { 'industry': 'Diagnostics & Research', 'name': 'Agilent Technologies, Inc.', 'sector': 'Healthcare', 'symbol': 'A'}, { 'industry': 'Aluminum', 'name': 'Alcoa Corporation', 'sector': 'Basic Materials', 'symbol': 'AA' }, { 'industry': 'Education & Training Services', 'name': 'ATA Creativity Global', 'sector': 'Consumer Defensive', 'symbol': 'AACG' }, --- snip --- ]
data = fin_info.industries() print(data)
[ 'Diagnostics & Research', 'Aluminum', 'Education & Training Services', 'Uncategorized', 'Shell Companies', 'Farm Products', 'Insurance - Life', 'Rental & Leasing Services', 'Communication Equipment', 'Building Products & Equipment', 'Specialty Retail', 'Consumer Electronics', 'REIT - Diversified', 'Asset Management', --- snip --- ]
data = fin_info.sectors() print(data)
[ 'Healthcare', 'Basic Materials', 'Consumer Defensive', 'Uncategorized', 'Financial Services', 'Industrials', 'Technology', 'Consumer Cyclical', 'Real Estate', 'Communication Services', 'Energy', 'Utilities' ]
data = fin_info.sector_industries("technology") print(data)
[ 'Communication Equipment', 'Consumer Electronics', 'Software - Infrastructure', 'Semiconductor Equipment & Materials', 'Information Technology Services', 'Software - Application', 'Semiconductors', 'Computer Hardware', 'Electronic Components', 'Solar', 'Electronics & Computer Distribution', 'Scientific & Technical Instruments' ]
data = fin_info.sector_equities("healthcare") print(data)
[ { 'industry': 'Diagnostics & Research', 'name': 'Agilent Technologies, Inc.', 'sector': 'Healthcare', 'symbol': 'A' }, { 'industry': 'Drug Manufacturers - General', 'name': 'AbbVie Inc.', 'sector': 'Healthcare', 'symbol': 'ABBV' }, { 'industry': 'Biotechnology', 'name': 'AbCellera Biologics Inc.', 'sector': 'Healthcare', 'symbol': 'ABCL' }, --- snip --- ]
data = fin_info.industry_equities("farm products") print(data)
[ { 'industry': 'Farm Products', 'name': 'African Agriculture Holdings Inc.', 'sector': 'Consumer Defensive', 'symbol': 'AAGRW'}, { 'industry': 'Farm Products', 'name': 'Archer-Daniels-Midland Company', 'sector': 'Consumer Defensive', 'symbol': 'ADM' }, { 'industry': 'Farm Products', 'name': 'Forafric Global PLC', 'sector': 'Consumer Defensive', 'symbol': 'AFRIW' } --- snip --- ]
data = fin_info.symbols() print(data)
[ 'A', 'AA', 'AACG', 'AACT-WT', 'AACT', 'AAGRW', 'AAME', 'AAN', --- snip --- ]
data = fin_info.sector_symbols("communication services") print(data)
[ 'ABLV', 'ABLVW', 'ADTH', 'ADVWW', 'ANTE', 'BAOS', 'BOC', 'CCO', --- snip --- ]
data = fin_info.industry_symbols("electronic components") print(data)
[ 'ALNT', 'BELFA', 'CLS', 'CTS', 'DAKT', 'DSWL', 'ELTK', 'FLEX', --- snip --- ]